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Review

• Homework: 55%
• Midterm: 25%
• Final: 30%

– Additional Enrollment: ONLY for senior students
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Data Type
• Data type determines the set of values that a data item can 

take and the operations that can be performed on the item

– Note that C does not provide any data type for storing text 
• Text is made up of individual characters
• “char” is supposed to store characters not numbers
• In the memory, characters are stored in their ASCII codes
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ASCII Codes
• In C language

– ‘5’ == int 53
– ‘5’-’0’==int 53 – int 48 == int 5
– If char c = ‘B’+32, then c==‘b’
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Program
• A program contains one or more functions, 

where a function is defined as a group of 
statements that perform a well-defined task
– A program should undoubtedly give correct 

results, but along with that it should also run 
efficiently

• The definition of a good program is
– runs correctly
– easy to read and understand
– easy to debug
– easy to modify
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Algorithm.
• The typical definition of algorithm is “a formally defined 

procedure for performing some calculation”
– In general terms, an algorithm provides a blueprint to write a 

program to solve a particular problem
– A program does not have to satisfy the fourth condition

(明確性)

(有限性)

(有效性)
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Algorithm..
• A complex algorithm is often divided into smaller units called 

modules
– This process of dividing an algorithm into modules is called 

modularization

• The key advantages of modularization are as follows:
– It makes the complex algorithm simpler to design and 

implement
– Each module can be designed independently
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Algorithm & Program
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Function
• Let us analyze the reasons why segmenting a program 

(algorithm) into manageable chunks is an important aspect of 
programming
– Dividing the program into separate well-defined functions 

facilitates each function to be written and tested separately

– Understanding, coding, and testing multiple separate functions 
is easier than doing the same for one big function

– Maintaining a huge program will be a difficult task

– When a big program is broken into comparatively smaller 
functions, then different programmers working on that project 
can divide the workload by writing different functions
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Recursive.
• The recursive mechanisms are extremely powerful, because 

they often can express a complex process very clearly

• Recursive functions can be categorized into three classes
– Direct Recursion

• The function may call itself before it is done

– Indirect Recursion
• The function may call other functions that again invoke the calling 

function

– Tail Recursion
• The function may call itself at the end of the function
• A special case of direct recursion
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Recursive..
Direct Recursion Indirect Recursion Tail Recursion

calling cycle
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Recursive…
• Let’s make a comparison

Recursion Non-Recursion

Codes are more compact Codes are complicated

Easy to understand Hard to read

Time-consuming Time-saving
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Examples – 1 
• Please write down a recursive program to do factorial

1! = 1

2! = 1 × 2

3! = 1 × 2 × 3

𝑛𝑛! = 1 × 2 × 3 × ⋯× 𝑛𝑛

0! = 1
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Examples – 2.
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹( 𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎 ), to calculate 

the Fibonacci number; (2) how many function calls do you 
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?
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Examples – 2..
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹( 𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎 ), to calculate 

the Fibonacci number; (2) how many function calls do you 
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?

𝐹𝐹𝐹𝐹𝐹𝐹(𝑎𝑎) = �
0, 𝐹𝐹𝑖𝑖 𝑎𝑎 = 0
1, 𝐹𝐹𝑖𝑖 𝑎𝑎 = 1

𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎 − 1 + 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎 − 2 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜
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Examples – 2…
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹( 𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎 ), to calculate 

the Fibonacci number; (2) how many function calls do you 
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?

𝐹𝐹𝐹𝐹𝐹𝐹(5) 𝐹𝐹𝐹𝐹𝐹𝐹(4)

𝐹𝐹𝐹𝐹𝐹𝐹(3)

𝐹𝐹𝐹𝐹𝐹𝐹(3)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)
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Examples – 3.
• Given an Ackerman’s function 𝐴𝐴(𝑚𝑚,𝑛𝑛), please calculate 
𝐴𝐴(1,2).

𝐴𝐴 𝑚𝑚,𝑛𝑛 = �
𝑛𝑛 + 1, 𝐹𝐹𝑖𝑖 𝑚𝑚 = 0

𝐴𝐴 𝑚𝑚 − 1,1 , 𝐹𝐹𝑖𝑖 𝑛𝑛 = 0
𝐴𝐴 𝑚𝑚 − 1,𝐴𝐴 𝑚𝑚,𝑛𝑛 − 1 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜

𝐴𝐴 1,2 = 𝐴𝐴 0,𝐴𝐴 1,1

𝐴𝐴 1,1 = 𝐴𝐴 0,𝐴𝐴 1,0

𝐴𝐴 1,0 = 𝐴𝐴 0,1

𝐴𝐴 0,1 = 2
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Examples – 3..
• Given an Ackerman’s function 𝐴𝐴(𝑚𝑚,𝑛𝑛), please calculate 
𝐴𝐴(1,2).

𝐴𝐴 𝑚𝑚,𝑛𝑛 = �
𝑛𝑛 + 1, 𝐹𝐹𝑖𝑖 𝑚𝑚 = 0

𝐴𝐴 𝑚𝑚 − 1,1 , 𝐹𝐹𝑖𝑖 𝑛𝑛 = 0
𝐴𝐴 𝑚𝑚 − 1,𝐴𝐴 𝑚𝑚,𝑛𝑛 − 1 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜

𝐴𝐴 1,2 = 𝐴𝐴 0,𝐴𝐴 1,1 = 𝐴𝐴 0,3 = 4

𝐴𝐴 1,1 = 𝐴𝐴 0,𝐴𝐴 1,0 = 𝐴𝐴 0,2 = 3

𝐴𝐴 1,0 = 𝐴𝐴 0,1 = 2

𝐴𝐴 0,1 = 2
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Questions?

kychen@mail.ntust.edu.tw
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