Program, Algorithm & Recursion

Kuan-Yu Chen (Ft 55 %)

2020/09/16 @ TR-212, NTUST

Review

Fundamentals of Data Structures in C++ 2nd edition ~ Data Structures Using C 2nd Edition

by Ellis Horowitz ~ (Author), Sartaj Sahni (Author), Dinesh Mehta (Author) by Reema Thareja *~ (Author)
ik ~ 20 customer reviews rdrdrdrsy v 2ratings

EEEEESDOS0O00RORGS

EEEEEEEE0S0000000 Hardcover Paperback Other

$15.99 - $65.50 $7.83 - $76.45 Seeall 11
FUNDAMENTALS OF B isee
DatA STRUCTURES ~ « Burre

Only 1 left in stock (more on the way).
Ships from and sold by Amazon.com. Gift-wrap avai

Paperback

from TWD 203.88

More Buying Cho

20 New from TWD 530

o

Horowrrz + Sasni - Mexa

EENEEESEOOOGOeee 0

This item ships to New Taipei City, Taiwan; Republi

rime student
P K« Coll

Reema Thareja

This second edition of D¢
consistent coverage of b
concepts using C langua

-lllll-l--ncor-’} o]

ISBN-13: 978-0198099307
ISBN-13: 978-0929306377 ISBN-10: 0198099304 _ -)
ISBN-10: 0929306376 Why is ISBN important? ~ introduction of different d

« Homework: 55%
o Midterm: 25%

e Final: 30%
— Additional Enrollment: ONLY for senior students

Data Type

Data type determines the set of values that a data item can
take and the operations that can be performed on the item

Data Type Size in Bytes Range Use
char 1 -128 to 127 To store characters
int 2 -32768 to 32767 To store integer numbers
float 4 3.4E-38 to 3.4E+38 To store floating point numbers
double 8 1.7E-308 to 1.7E+308 To store big floating point numbers

— Note that C does not provide any data type for storing text

 Text is made up of individual characters

« “char” is supposed to store characters not numbers

o In the memory, characters are stored in their ASCII codes

ASCII Codes

 In Clanguage
— 5" == int 53
- ‘5’-’0’==int 53 -t 48 ==1nt 5
— If char ¢ = ‘B’+32, then c=="b’

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] 64 40 @ 96 60

1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 C
4 4 [END OF TRANSMISSION] 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 q
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A % 74 4A) 106 6A
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2C , 76 4c L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 6D m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 4F 8] 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 S 115 Tic) 5
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 1] 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 v 118 76 v
23 17 [ENG OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 X
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79 y
26 1A [SUBSTITUTE] 58 3A : 90 S5A z 122 7A z
27 1B [ESCAPE] 59 3B H 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3C < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 5D 1 125 7D }
30 1E [RECORD SEPARATOR] 62 3E > 94 5E -~ 126 7E -
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F _ 127 7F [DEL]

Program

A program contains one or more functions,
where a function is defined as a group of
statements that perform a well-defined task

— A program should undoubtedly give correct
results, but along with that it should also run
efficiently

The definition of a good program is
— runs correctly
— easy to read and understand
— easy to debug
— easy to modity

main()

{
Statement
Statement
Statement
}
Functionl()
{
Statement
Statement
Statement
}
Function2()
{
Statement
Statement
Statement
}

..................

FunctionN()

{
Statement

Statement

Statement

..

Y

..

Y

..

Algorithm.

o The typical definition of algorithm is “a formally defined
procedure for performing some calculation”

— In general terms, an algorithm provides a blueprint to write a
program to solve a particular problem

— A program does not have to satisty the fourth condition

Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a
particular task. In addition, all algorithms must satisfy the following criteria:

(1) Input. Zero or more quantities are externally supplied.
(2) Output. At least one quantity is produced.
(3) Definiteness. Each instruction is clear and unambiguous. (FA%#E)

(4) Finiteness. If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps. (AR)

(5) Effectiveness. Every instruction must be basic enough to be carried out, in princi-

ple, by a person using only pencil and paper. It is not enough that each operation
be definite as in (3); it also must be feasible. 0O (F%11%)

Algorithm..

« A complex algorithm is often divided into smaller units called
modules

— This process of dividing an algorithm into modules is called
modularization

« The key advantages of modularization are as follows:

— It makes the complex algorithm simpler to design and
implement

— Each module can be designed independently

Complex algorithm

Module 1 Module 2 |- Module n
I I I | I I I I |

Each module can be divided into one or more sub-modules

Algorithm & Program

Algorithms + Data Structures = Programs (Prentice-Hall Series in Automatic Computation)
by Niklaus Wirth | Feb 1,1976

whr Wiy v 17

Hardcover

TWEQ5737 1o rent

Only 2 left in stock - order soon.
More Buying Choices

TWD 249.62 (60 used & new offers)

Paperback
More Buying Choices
TWD 4,272.82 (5 used offers)

Function

Let us analyze the reasons why segmenting a program
(algorithm) into manageable chunks is an important aspect of
programming
— Dividing the program into separate well-defined functions
facilitates each function to be written and tested separately

— Understanding, coding, and testing multiple separate functions
is easier than doing the same for one big function

— Maintaining a huge program will be a difficult task

— When a big program is broken into comparatively smaller
functions, then different programmers working on that project
can divide the workload by writing different functions

Recursive.

« The recursive mechanisms are extremely powerful, because
they often can express a complex process very clearly

« Recursive functions can be categorized into three classes

— Direct Recursion

 The function may call itself before it is done

— Indirect Recursion

 The function may call other functions that again invoke the calling
function

— Tail Recursion
« The function may call itself at the end of the function

« A special case of direct recursion

10

Recursive..

Direct Recursion Indirect Recursion Tail Recursion
1 function A() 1 function A() 1 function A()

U | SR >
B() ; AC) ;
}

16 function B()
11 {

12

13

14 A() ;

15 callihg cycle

(o NIV I

O~ Oy B WM

O

11

Recursive...

« Let’s make a comparison

Recursion Non-Recursion

Codes are more compact Codes are complicated
Easy to understand Hard to read

Time-consuming Time-saving

12

Examples -1

 Please write down a recursive program to do factorial
0l=1

1'=1
21=1X%2
31=1%Xx2X3

n=1xX2X3X:Xn

1 int factorial(int a)

2 A

3 if(a == 0)

4 return 1 ;

5 else

6 return factorial(a-1)*a ;
7}

13

Examples - 2.

« Please (1) write a recursive program, Fib(int a), to calculate
the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate Fib(5)?

Fibonacci number

From Wikipedia, the free encyclopedia

In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci

sequence, and characterized by the fact that every number after the first two is the sum of the two preceding
[1112]

ones:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
Often, especially in modern usage, the sequence is extended by one more initial term:
0, 1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, ...Fl

By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the
chosen starting point of the sequence, and each subsequent number is the sum of the previous two.

The sequence F, of Fibonacci numbers is defined by the recurrence relation:
Fn = Fn.—] + Fn_Q,
with seed values! 2]

F=1FK=1

orl?]

Fy=0, F, = 1.

Examples - 2..

Please (1) write a recursive program, Fib(int a), to calculate
the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate Fib(5)?

0, ifa=0
Fib(a) = 1, ifa=1
Fib(a — 1) + Fib(a — 2), otherwise

int Fib(int a)

{
if(a == 0)
return 0 ;
else if(a == 1)
return 1 ;
else
return Fib(a-1)+Fib(a-2) ;
}

15

Examples - 2...

« Please (1) write a recursive program, Fib(int a), to calculate
the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate Fib(5)?

Fib(5) Fib(4) Yﬂb (3) i

Fib(3)

Fib(2) i:

Fib(2)
Fib(1)

Fib(2)
Fib(1)
Fib(1)
Fib(0)
Fib(1)
Fib(0)

Fib(1)

Fib(0)

int Fib(int a

{

if(a == ©

else

else

return
if(a
return

return

L —

)
e ;
==1)
1.

Fib(a-1)+Fib(a-2) ;

Examples - 3.

« Given an Ackerman’s function A(m, n), please calculate

A(1,2).
n+1, ifm=20
A(m,n) = A(m—1,1), ifn=0
A(m —1,A(m,n — 1)), otherwise
A(1,2) = A(0,A(1,1)) '\
A(1,1) = A(0,A(1,0))
A(1,0) = A(0,1) /
A(0,1) =2

17

Examples - 3..

« Given an Ackerman’s function A(m, n), please calculate
A(1,2).

n+1, ifm=20
A(m, n) = A(m - 1,1), lfn =0
A(m —1,A(m,n — 1)), otherwise
A(1,2) = A(0,A(1,1)) = A(0,3) = 4
A(1,1) = A(0,A(1,0)) = 4(0,2) = 3
A(1,0) = 4(0,1) = 2

A(0,1) = 2

18

Questions?

kychen@mail.ntust.edu.tw

19

	Program, Algorithm & Recursion
	Review
	Data Type
	ASCII Codes
	Program
	Algorithm.
	Algorithm..
	Algorithm & Program
	Function
	Recursive.
	Recursive..
	Recursive…
	Examples – 1
	Examples – 2.
	Examples – 2..
	Examples – 2…
	Examples – 3.
	Examples – 3..
	Questions?

