
Program, Algorithm & Recursion

Kuan-Yu Chen (陳冠宇)

2020/09/16 @ TR-212, NTUST

2

Review

• Homework: 55%
• Midterm: 25%
• Final: 30%

– Additional Enrollment: ONLY for senior students

3

Data Type
• Data type determines the set of values that a data item can

take and the operations that can be performed on the item

– Note that C does not provide any data type for storing text
• Text is made up of individual characters
• “char” is supposed to store characters not numbers
• In the memory, characters are stored in their ASCII codes

4

ASCII Codes
• In C language

– ‘5’ == int 53
– ‘5’-’0’==int 53 – int 48 == int 5
– If char c = ‘B’+32, then c==‘b’

5

Program
• A program contains one or more functions,

where a function is defined as a group of
statements that perform a well-defined task
– A program should undoubtedly give correct

results, but along with that it should also run
efficiently

• The definition of a good program is
– runs correctly
– easy to read and understand
– easy to debug
– easy to modify

6

Algorithm.
• The typical definition of algorithm is “a formally defined

procedure for performing some calculation”
– In general terms, an algorithm provides a blueprint to write a

program to solve a particular problem
– A program does not have to satisfy the fourth condition

(明確性)

(有限性)

(有效性)

7

Algorithm..
• A complex algorithm is often divided into smaller units called

modules
– This process of dividing an algorithm into modules is called

modularization

• The key advantages of modularization are as follows:
– It makes the complex algorithm simpler to design and

implement
– Each module can be designed independently

8

Algorithm & Program

9

Function
• Let us analyze the reasons why segmenting a program

(algorithm) into manageable chunks is an important aspect of
programming
– Dividing the program into separate well-defined functions

facilitates each function to be written and tested separately

– Understanding, coding, and testing multiple separate functions
is easier than doing the same for one big function

– Maintaining a huge program will be a difficult task

– When a big program is broken into comparatively smaller
functions, then different programmers working on that project
can divide the workload by writing different functions

10

Recursive.
• The recursive mechanisms are extremely powerful, because

they often can express a complex process very clearly

• Recursive functions can be categorized into three classes
– Direct Recursion

• The function may call itself before it is done

– Indirect Recursion
• The function may call other functions that again invoke the calling

function

– Tail Recursion
• The function may call itself at the end of the function
• A special case of direct recursion

11

Recursive..
Direct Recursion Indirect Recursion Tail Recursion

calling cycle

12

Recursive…
• Let’s make a comparison

Recursion Non-Recursion

Codes are more compact Codes are complicated

Easy to understand Hard to read

Time-consuming Time-saving

13

Examples – 1
• Please write down a recursive program to do factorial

1! = 1

2! = 1 × 2

3! = 1 × 2 × 3

𝑛𝑛! = 1 × 2 × 3 × ⋯× 𝑛𝑛

0! = 1

14

Examples – 2.
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎), to calculate

the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?

15

Examples – 2..
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎), to calculate

the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?

𝐹𝐹𝐹𝐹𝐹𝐹(𝑎𝑎) = �
0, 𝐹𝐹𝑖𝑖 𝑎𝑎 = 0
1, 𝐹𝐹𝑖𝑖 𝑎𝑎 = 1

𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎 − 1 + 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎 − 2 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜

16

Examples – 2…
• Please (1) write a recursive program, 𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹𝑛𝑛𝑖𝑖 𝑎𝑎), to calculate

the Fibonacci number; (2) how many function calls do you
need to do when we want to calculate 𝐹𝐹𝐹𝐹𝐹𝐹(5)?

𝐹𝐹𝐹𝐹𝐹𝐹(5) 𝐹𝐹𝐹𝐹𝐹𝐹(4)

𝐹𝐹𝐹𝐹𝐹𝐹(3)

𝐹𝐹𝐹𝐹𝐹𝐹(3)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)

𝐹𝐹𝐹𝐹𝐹𝐹(2)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)

𝐹𝐹𝐹𝐹𝐹𝐹(1)

𝐹𝐹𝐹𝐹𝐹𝐹(0)

17

Examples – 3.
• Given an Ackerman’s function 𝐴𝐴(𝑚𝑚,𝑛𝑛), please calculate
𝐴𝐴(1,2).

𝐴𝐴 𝑚𝑚,𝑛𝑛 = �
𝑛𝑛 + 1, 𝐹𝐹𝑖𝑖 𝑚𝑚 = 0

𝐴𝐴 𝑚𝑚 − 1,1 , 𝐹𝐹𝑖𝑖 𝑛𝑛 = 0
𝐴𝐴 𝑚𝑚 − 1,𝐴𝐴 𝑚𝑚,𝑛𝑛 − 1 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜

𝐴𝐴 1,2 = 𝐴𝐴 0,𝐴𝐴 1,1

𝐴𝐴 1,1 = 𝐴𝐴 0,𝐴𝐴 1,0

𝐴𝐴 1,0 = 𝐴𝐴 0,1

𝐴𝐴 0,1 = 2

18

Examples – 3..
• Given an Ackerman’s function 𝐴𝐴(𝑚𝑚,𝑛𝑛), please calculate
𝐴𝐴(1,2).

𝐴𝐴 𝑚𝑚,𝑛𝑛 = �
𝑛𝑛 + 1, 𝐹𝐹𝑖𝑖 𝑚𝑚 = 0

𝐴𝐴 𝑚𝑚 − 1,1 , 𝐹𝐹𝑖𝑖 𝑛𝑛 = 0
𝐴𝐴 𝑚𝑚 − 1,𝐴𝐴 𝑚𝑚,𝑛𝑛 − 1 , 𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐹𝐹𝑜𝑜𝑜𝑜

𝐴𝐴 1,2 = 𝐴𝐴 0,𝐴𝐴 1,1 = 𝐴𝐴 0,3 = 4

𝐴𝐴 1,1 = 𝐴𝐴 0,𝐴𝐴 1,0 = 𝐴𝐴 0,2 = 3

𝐴𝐴 1,0 = 𝐴𝐴 0,1 = 2

𝐴𝐴 0,1 = 2

19

Questions?

kychen@mail.ntust.edu.tw

	Program, Algorithm & Recursion
	Review
	Data Type
	ASCII Codes
	Program
	Algorithm.
	Algorithm..
	Algorithm & Program
	Function
	Recursive.
	Recursive..
	Recursive…
	Examples – 1
	Examples – 2.
	Examples – 2..
	Examples – 2…
	Examples – 3.
	Examples – 3..
	Questions?

